首页> 外文OA文献 >Horizontal structures of velocity and temperature boundary layers in two-dimensional numerical turbulent Rayleigh-Bénard convection
【2h】

Horizontal structures of velocity and temperature boundary layers in two-dimensional numerical turbulent Rayleigh-Bénard convection

机译:二维数值湍流瑞利-贝纳德对流中速度和温度边界层的水平结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate the structures of the near-plate velocity and temperature profiles at different horizontal positions along the conducting bottom (and top) plate of a Rayleigh-Bénard convection cell, using two-dimensional (2D) numerical data obtained at the Rayleigh number Ra = 108 and the Prandtl number Pr = 4.4 of an Oberbeck-Boussinesq flow with constant material parameters. The results show that most of the time, and for both velocity and temperature, the instantaneous profiles scaled by the dynamical frame method [Q. Zhou and K.-Q. Xia, “Measured instantaneous viscous boundary layer in turbulent Rayleigh-Bénard convection,” Phys. Rev. Lett. 104, 104301 (2010)] agree well with the classical Prandtl-Blasius laminar boundary layer (BL) profiles. Therefore, when averaging in the dynamical reference frames, which fluctuate with the respective instantaneous kinematic and thermal BL thicknesses, the obtained mean velocity and temperature profiles are also of Prandtl-Blasius type for nearly all horizontal positions. We further show that in certain situations the traditional definitions based on the time-averaged profiles can lead to unphysical BL thicknesses, while the dynamical method also in such cases can provide a well-defined BL thickness for both the kinematic and the thermal BLs
机译:我们使用在瑞利数Ra =下获得的二维(2D)数值数据,研究沿瑞利-贝纳德对流电池的导电底部(和顶部)平板在不同水平位置的近板速度和温度分布的结构。 108和具有恒定材料参数的Oberbeck-Boussinesq流的普朗特数Pr = 4.4。结果表明,在大多数情况下,对于速度和温度,瞬时轮廓都是通过动态框架方法缩放的。周和Q. Xia,“湍流瑞利-贝纳德对流中的瞬时粘性边界层测量值”,《物理学》。牧师104,104301(2010)]与经典的Prandtl-Blasius层流边界层(BL)轮廓非常吻合。因此,当在动态参考系中求平均时,动态参考系随相应的瞬时运动学和热学BL厚度而波动,对于几乎所有水平位置,所获得的平均速度和温度分布图也是Prandtl-Blasius类型。我们进一步表明,在某些情况下,基于时间平均轮廓的传统定义可能会导致非物理BL厚度,而在这种情况下,动力学方法也可以为运动BL和热BL提供良好定义的BL厚度

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号